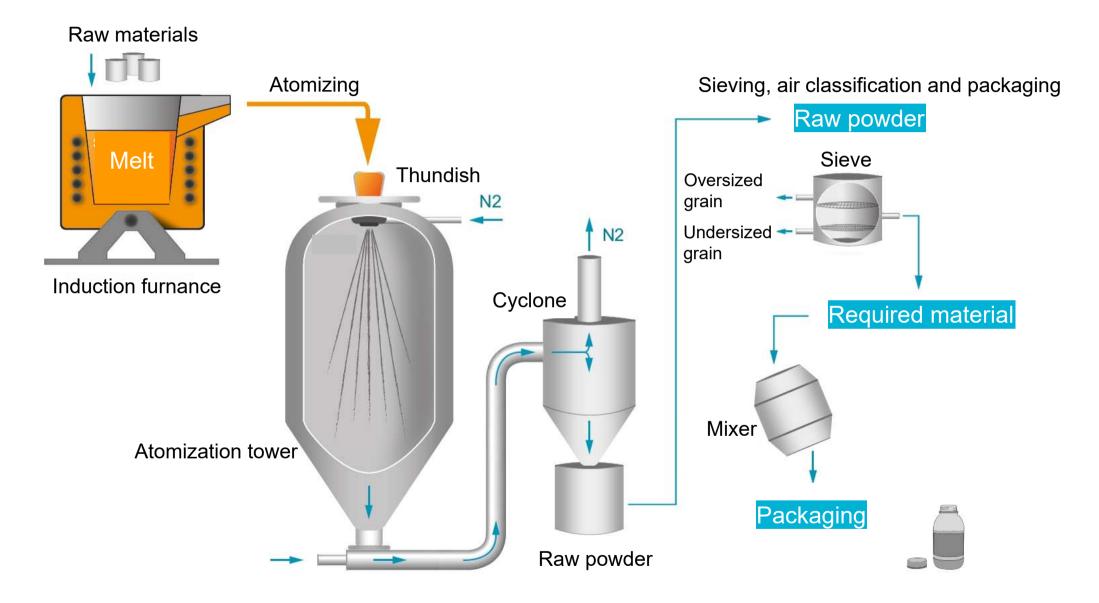
Corrosion (and also wear-) resistant Fe-base materials for AM

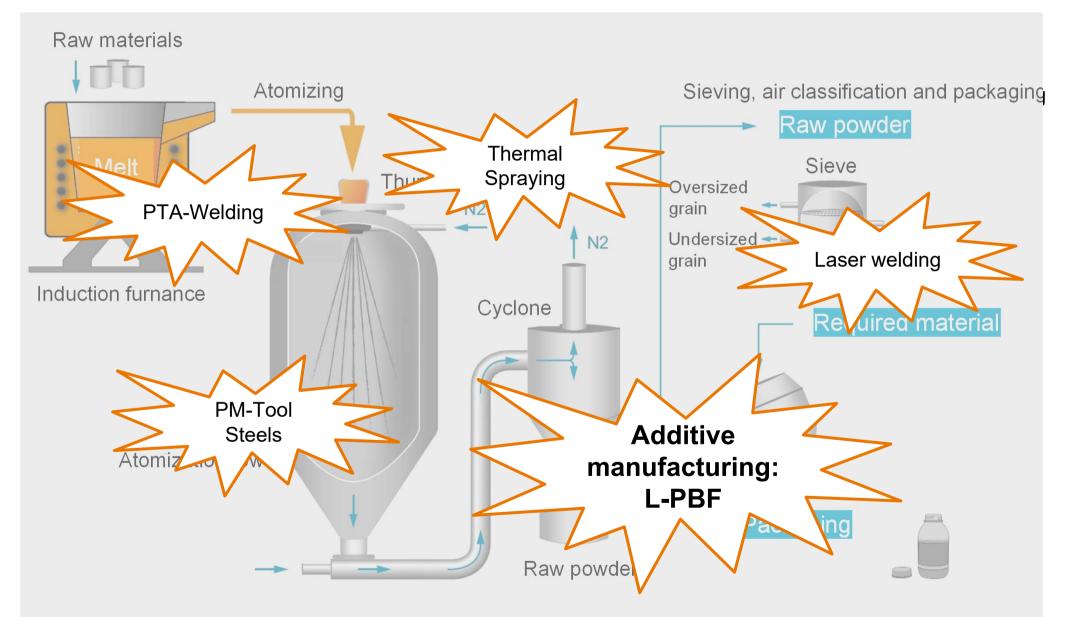
Dr. Horst Hill Optimat: "Networking Outside The Box", 30th January

Printdur

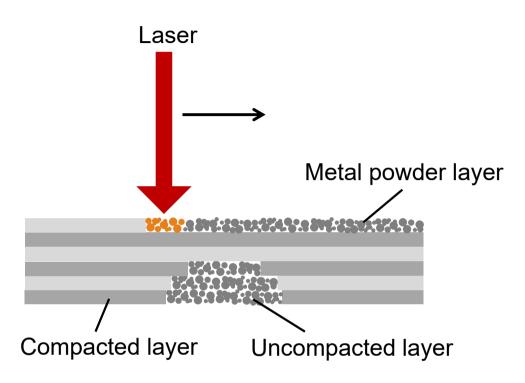
Inhalt


- 01 Introduction
- **02** Material development for AM
- 03 Conclusion

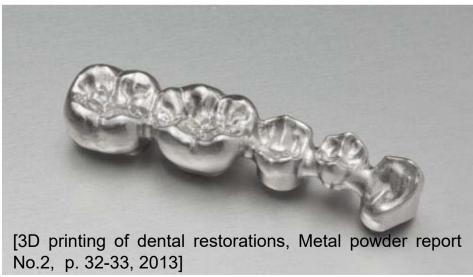
Introduction



Metal powder production: Gas-atomization



Metal powder production: Gas-atomization


Additive Manufacturing: Process description LPBF

A thin powder layer is applied
 A laser locally melts the powder
 The building platform is lowered
 A new layer of powder is applied

→ Repeat until the part is finished
→ The part is build up "layer by layer"

Additive manufacturing with wear-resistant materials

Material	С	Si	Mn	Cr	Мо	V
1.2343	0.37	1.0	0.5	5.5	1.3	0.4
1.2344	0.40	1.0	0.5	5.3	1.3	1.0

Properties	Fields of application	Potential for AM
 Martensitic tool steel High hardness and strength (also at elevated temperatures) Good wear resistance Hardness after heat treatment: approx. 52 HRC 	Injection molds	 The materials are well known and investigated There are a lot of possible applications AM offers the possibility for more complex tools

However, is it possible to carry over this material to AM?

Additive manufacturing with wear-resistant materials

- ➢ Powder: 1.2344, 20 − 53 µm
- ➢ Identical processing parameters → Volume energy E ≈ 67 J/mm³
 - Laser power: 200 W
 - Scan velocity: 1.000 mm/s
 - Hatch distance: 100 µm
 - Layer thickness: 40 µm
- Preheating temperatures: Room temperature, 200°C, 400°C

Yes, it is. But, you have to deal with a small processing window \rightarrow "cracks or pores".

02 Material development for AM

Example 1: Corrosion resistant austenite

Main alloy design of typical stainless austenitic steels

C < 0.1 wt.-%

Prevents the precipitation of chromium carbides

N < 0.2 wt.-%

Prevents the precipitation of chromium nitrides

Ni 10 – 14 wt.-%

Stabilization of austenite **Cr** 16 – 20 wt.-%

Corrosion resistance

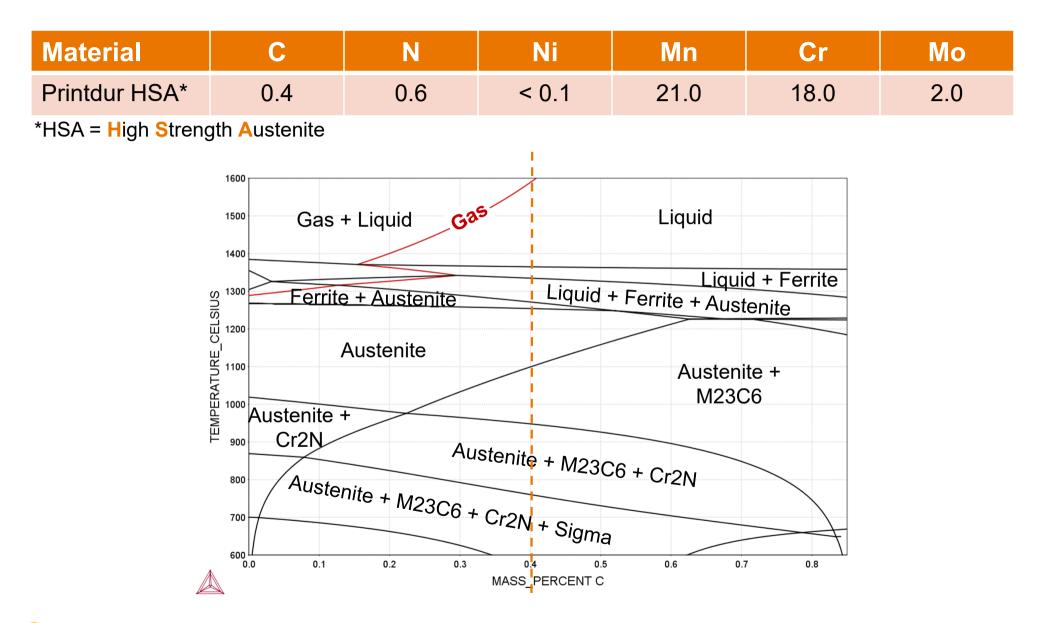
Mo 1 – 3 wt.-%

Corrosion resistance

Properties of typical stainless austenitic steel (e.g. 1.4404/316L):

- Good corrosion resistance
- Low hardness and strength
- High toughness
- Good processing with L-PBF

Main alloy design of high strength stainless austenitic steels



Benefits of high strength stainless austenitic steels compared to typical stainless austenitic steels (e.g. 1.4404/316L):

- Higher hardness and strength (however, reduced toughness)
- Comparable corrosion resistance
- ➢ Free from nickel → important for "Health & Safety" during processing

Thermo-Calc (TCFe9-data base, nominal composition)

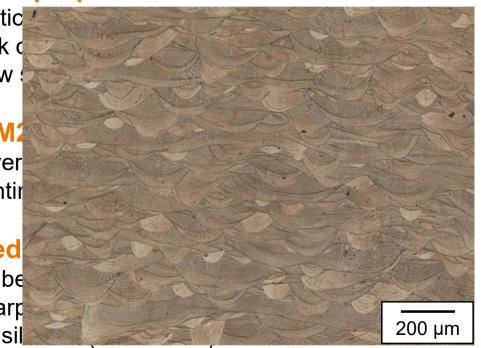
Comparison: Printdur 4404 und Printdur HSA

Material	С	Ν	Ni	Mn	Cr	Мо
Printdur 4404*	0.02	0.08	12.7	0.81	17.2	2.1
Printdur HSA*	0.39	0.62	0.02	21.2	18.1	2.2

*OES-Analysis; Fe = base element, values given in wt.-%

Powder properties of Printdur HSA:

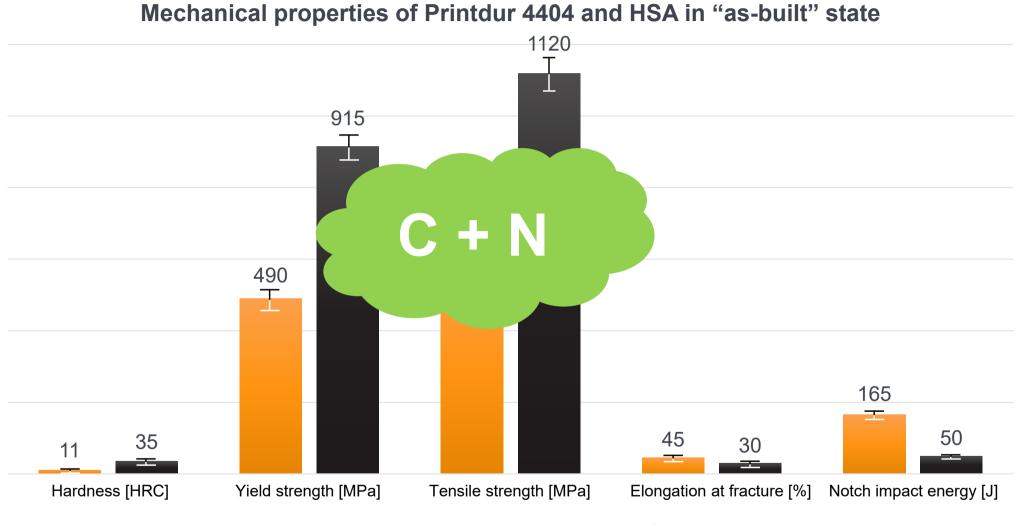
Partic


- Bulk c
- > Flow:

EOS M2

- Layer
- > Printir

Printed


- ➢ "Cube
- Charp
- > Tensil

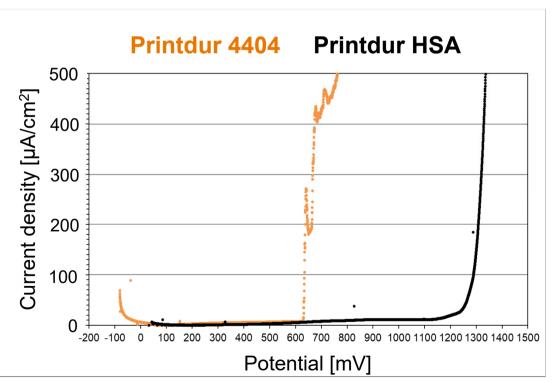
Mechanical properties

Printdur 4404

Printdur HSA

Corrosion properties: ASTM G150

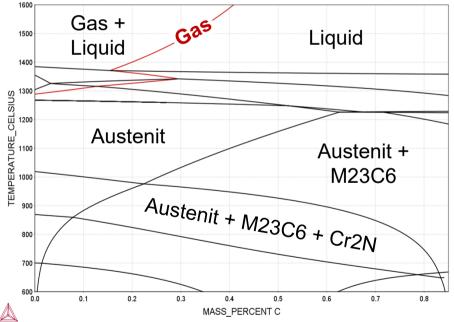
Material	С	Ν	Ni	Mn	Cr	Мо	PREN
Printdur 4404	0.02	0.08	12.7	0.81	17.2	2.1	25.5
Printdur HSA	0.39	0.62	0.02	21.2	18.1	2.2	35.3


- The Pitting Resistance Equivalent Number (PREN) describes the resistance against pitting corrosion
- PREN = %Cr + 3,3 x Mo + 16 x %N
- Current-potential-curves according to ASTM G150
- Room temperature and 3.56% NaCl
- > Breakdown potential = $100 \,\mu\text{A/cm}^2$

Corrosion properties: ASTM G150

Material	С	Ν	Ni	Mn	Cr	Мо	PREN
Printdur 4404	0.02	0.08	12.7	0.81	17.2	2.1	25.5
Printdur HSA	0.39	0.62	0.02	21.2	18.1	2.2	35.3

- The Pitting Resistance Equivalent Number (PREN) describes the resistance against pitting corrosion
- PREN = %Cr + 3,3 x Mo + 16 x %N
- N is only useful as it is dissolved within the metal matrix, otherwise it causes precipitations which reduces the corrosion resistance
- The fast cooling speed within the printing process inhibits the precipitation of carbides and nitrides



Corrosion properties

Material	С	Ν	Ni	Mn	Cr	Мо	PREN
Printdur 4404	0.02	0.08	12.7	0.81	17.2	2.1	25.5
Printdur HSA	0.39	0.62	0.02	21.2	18.1	2.2	35.3

- The Pitting Resistance Equivalent Number (PREN) describes the resistance against pitting corrosion
- PREN = %Cr + 3,3 x Mo + 16 x %N
- N is only useful as it is dissolved within the metal matrix, otherwise it causes precipitations which reduces the corrosion resistance
- The fast cooling speed within the printing process inhibits the precipitation of carbides and nitrides

Consideration of the characteristics of the LPBF-process during development

02 Material development for AM

Example 2: Corrosion resistant martensite

Typical L-PBF materials for tooling

- ➢ For L-PBF we need a good processability = weldability
- > But, materials with low carbon content don't provide a sufficient wear resistant

Grade / Norm	Chemical composition [mass-%]					b]		
	С	Si	Mn	Cr	Мо	Ni	Со	Cu
Printdur Powderfort (~1.2709)	< 0.02	0.5	0.5	-	5.0	18.0	13.5	-
Printdur 2343 (1.2343)	0.37	1.0	0.5	5.5	1.3	-	-	-
Printdur 2344 (1.2344)	0.40	1.0	0.5	5.3	1.3	-	-	-

- > The 1.2709 is a standard tooling materials for AM
 - Maximum hardness of approx. 55 HRC, no carbides
 - Alloyed with Ni and Co → "Health & Safety"

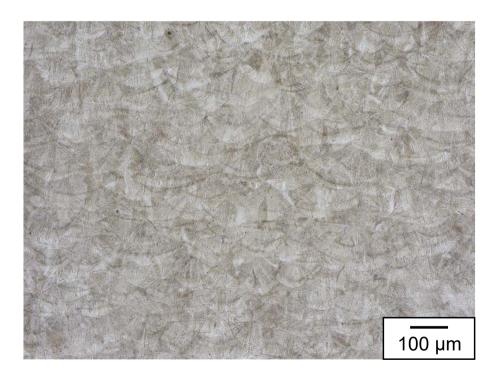
➢ H11 and H13 are very complex to process

Printdur HCT: Corrosion resistant tool steel

Material	C + N	Mn	Cr	Мо
Printdur HCT*	0,41	3,1	13,2	1,1

*OES-Analysis; Fe = base element, values given in wt.-%

Powder properties of Printdur HSA:

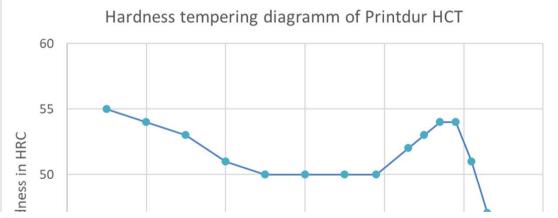

- > Particle size distribution: $10 53 \mu m$
- Bulk density: 4.3 g/cm³
- Flow speed: 15.5 s/50g

EOS M290:

- ➤ Laser power: 180 W
- Scan velocity: 692 mm/s
- Hatch distance: 100 µm
- Layer thickness: 40 μm
- Preheating temperature: 150°C

Printed samples:

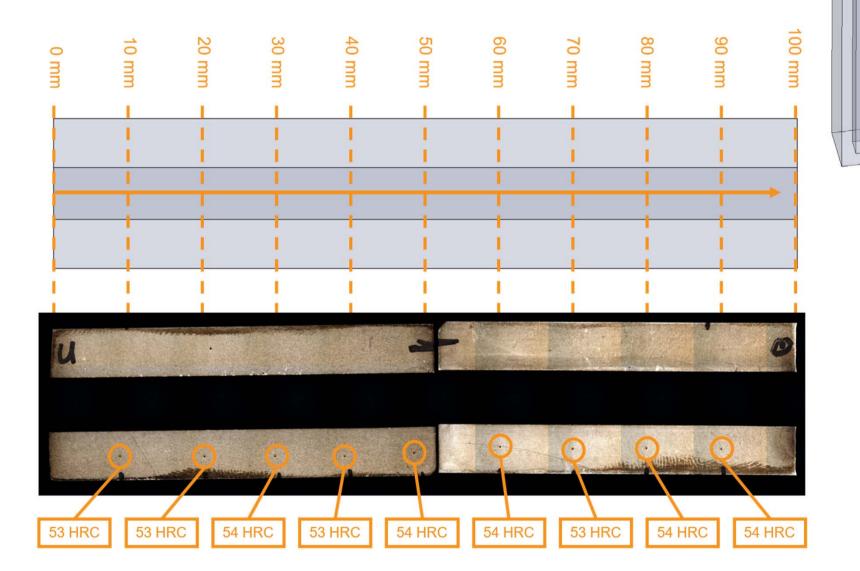
- \succ "Cubes" \rightarrow Microstructure and density
- Compression test, Charpy V-notch test



Mechanical properties

Heat treatment	Hardness in HRC	Offset yield strength in MPa	Notch impact energy in J
As-printed	53 ± 1	2130 ± 40	5 ± 1
As-printed + deed cooled	57 ± 1	2270 ± 45	5 ± 1
As-printed + tempered*	54 ± 1	1440 ± 32	10 ± 2

*Secondary peak hardness: 540°C, 90 min



- \succ As-printed \rightarrow no heat treatment
- > As-printed + deep cooled \rightarrow simple heat treatment for max. hardness
- > As-printed + tempered \rightarrow simple heat treatment for max. tempering resistance

Hardness profile

Conclusion

Conclusion

Printdur HSA in comparison to 316L:

- Tailored chemical composition for additive manufacturing
 - Similar processing parameters
 - Increased hardness and strength, reduced toughness
 - Improved corrosion resistance
 - No Nickel → "Health & Safety"

Printdur HCT:

- Tailored chemical composition for additive manufacturing
 - Corrosion resistant martensite
 - Hardness of approx. 53 HRC in the as-printed condition
 - Increase in hardness is possible be help of an easy heat treatment
 - No Ni and Co (in comparison to 1.2709) → "Health & Safety"

Vielen Dank für Ihre Aufmerksamkeit!

Together. For a future that matters.