

Fundamentals of Simultaneous Machining and Coating (SMaC)

Combination of extreme high-speed laser material deposition (EHLA) and turning

Viktor Glushych, M.Sc. viktor.glushych@ilt.fraunhofer.de Fraunhofer Institute for Laser Technology ILT Steinbachstraße 15 | 52074 Aachen | Germany

Fundamentals of Simultaneous Machining and Coating (SMaC)

Index

- **1. What is EHLA?**
- **2. What is SMaC ?**
- **3. Investigating the fundamentals of SMaC**
	- **Experimental setup and materials**
	- **Experimental approach**
	- **Exaluation methodology**

4. Results

- **•** Dimensional accuracy
- **■** Surface roughness
- Tool wear

5. Conclusions & outlook

2

What is EHLA? EHLA – Extreme High-Speed Laser Material Deposition

- **High-speed** variant of LMD (>>20 m/min)
- ◼ Powder is melting **above** the workpiece surface
- ◼ Powder **material efficiency >90%**
- Low dilution, heat affected zone and distortion
- Layer thickness between 30 µm and 500 µm
- Industrial applications in **Coating, Repair and AM**
- Known as HS-LMD, HSLC, UHSLC, HS-DED, RC, ...

What is EHLA? EHLA – Extreme High-Speed Laser Material Deposition

EHLA coating applications and surface quality requirements

EHLA – Extreme High-Speed Laser Material Deposition

Typical surface roughness: **Ra 4.6 – 20.5 µm**

Post-machining

Turning

- **Grinding**
- **Milling**
- Roller burnishing

◼ …

Industrial application

- Automotive (brake disc rotors, piston rods, ...)
- Aerospace (Landing gear components)
- Agricultural (harvester knives, circular blades)
- Energy (wind power drives, offshore)
- Manufacturing (cylinders, rollers)

Typical requirements for functional surfaces: **Ra 0.4 – 1.6 µm**

What is SMaC?

Fundamentals of Simultaneous Machining and Coating (SMaC)

Coating via EHLA

Typical surface speeds (spindle rotation): 20 m/min – 500 m/min

Typical feed rates (axial movement): 0.1 mm/rev $-$ 0.6 mm/rev

Post-machining via turning

Typical cutting speeds (spindle rotation): 20 m/min – 600 m/min

Typical feed rates (axial movement): 0.05 – 0.6 mm/rev

What is SMaC?

Fundamentals of Simultaneous Machining and Coating (SMaC)

Operating principle and relevant parameters

Fundamentals of Simultaneous Machining and Coating (SMaC)

SMaC process parameters • Laser power [W] • Laser spot diameter [mm] Surface speed [m/min] **Co** Feed rate [mm/rev] • Powder mass flow [kg/h] Shielding gas flow [l/min] • Carrier gas flow [I/min] • Depth of cut [mm] **• Parameter related to the machining process**

● Parameter related to the coating process

20.10.2024 **80.10.2024 Braunhofer** ILT

Operating principle and relevant parameters

Fundamentals of Simultaneous Machining and Coating (SMaC)

- **P** Parameter related to the machining process
- Parameter related to the coating process
- **Parameter unique to the SMaC process**

Research question

Investigating the fundamentals of Simultaneous Machining and Coating (SMaC)

Which impact does simultaneous machining have on…

… in comparison to sequential machining?

Experimental setup and materials

Investigating the fundamentals of Simultaneous Machining and Coating (SMaC)

Coating process setup

Laser beam source: Laserline LDF 8000-40 max. 8.7 kW Laser power BPP 40 mm*mrad

Optics:

Laserline OTZ-5 Zoom Optics 400 µm fiber core diameter Laser spot diameter 1.4 − 6 mm

Nozzle: HD HighNo 4.0 (SO: 10 mm)

J.G. Weisser ARTERY M-2 Hybrid-EHLA

Substrate and powder material:

- AISI 4130 substrate rods, Ø50 mm
- Höganäs X-Rockit® 431 SR 20-53 martensitic stainless steel powder

Turning process setup

Workpiece handling: max. 5400 RPM max. 1000 mm length

Tool Turret: 12 live tool slots BMT 65 tool holder

Turning tool inserts:

Sumitomo AC6030M 0.8 mm corner radius

Experimental approach

Investigating the fundamentals of Simultaneous Machining and Coating (SMaC)

Investigation stage 1

EHLA process parameter development for X-Rockit 431 SR

- Target coating thickness: 200 µm each
- Var. A: 100 m/min, 0.15 mm/rev Var. B: 150 m/min, 0.15 mm/rev
- No cracks, minimal porosity, no bonding defects

Investigation stage 2

SMaC trials with variation of TCP offset Δz

- Coating/machining length: $L = 15$ mm
- $\Delta z \in \{2 \text{ mm}, 3 \text{ mm}, 5 \text{ mm}, \}$ 7 mm, 9 mm, 11mm}
- **■** Unmachined and sequentially turned coatings as reference

Evaluation of **dimensional accuracy** Evaluation of **surface roughness**

Investigation stage 3

Deposition of larger coating sections for tool wear assessment

- Coating/machining length: 6 segments with $L = 90$ mm each
- \triangle $\Delta z = 7$ mm
- Sequentially turned coatings as reference

Evaluation of **tool wear**

Evaluation methodology

Investigating the fundamentals of Simultaneous Machining and Coating (SMaC)

Dimensional deviations

- Surface measurement using Zygo Ametek NX2 WLI
- **Extraction of waviness** profiles according to DIN EN ISO 4287 and DIN EN ISO 4288:1998

Surface roughness

- Surface measurement using Zygo Ametek NX2 WLI
- Extraction of **roughness** profiles according to DIN EN ISO 4287 and DIN EN ISO 4288:1998

Tool wear

- Scan of cutting edges before and after operation using Keyence VR-5200 optical profilometer
- Qualitative comparison of cutting edges based on image data

Process parameter development

EHLA coatings:

Dimensional accuracy of SMaC coatings

Dimensional accuracy of SMaC coatings

Dimensional accuracy of SMaC coatings

Surface roughness of SMaC coatings

No significant difference in surface roughness between SMaC and sequential machining at 100 m/min. At 150 m/min SMaC provides a better surface finish.

Results Investigation of tool wear

Results Investigation of tool wear

Cutting inserts used for SMaC exhibit smaller visible signs of abrasion compared to sequential machining, indicating potential for extending the service life of the turning tool.

Conclusion and outlook

Simultaneous Machining and Coating (SMaC)

Conclusion

- Positive effect of SMaC on surface roughness observed
- **Positive effect of SMaC on tool wear was observed**
- **Dimensional deviation is strongly correlated to the programmed TCP** offset and is linked to thermal expansion of the workpiece

Outlook

- **EXT** Mitigation of dimensional deviation by active control of tool infeed
	- **EXEC** Closed loop system or numeric simulation
- **I** Investigations into the effect of Δz on cutting force using piezoelectric force sensors
- Exploring *further process combinations*, such as SCaRB
- **.** Investigation of the compressive stresses induced into the coating by the cutting tool

Outlook

Enhanced coating and machinability of very brittle materials, such as NiCrBSi

EHLA coatings exhibit **cold cracks** induced by high thermal stress. Post-machining by **turning is not feasible** due to high hardness & brittleness of the material.

With SMaC, **crack-free coatings** can be deposited due to compressive stresses induced by the tool. Simultaneous **turning is possible** despite high hardness & brittleness.

CONTACT $\frac{1}{2}$

Viktor Glushych, M.Sc. Group Manager

Coating LMD and Heat Treatment Tel. +49 241 8906-152 Fax +49 241 8906-112 viktor.glushych@ilt.fraunhofer.de

Fraunhofer Institute for Laser Technology ILT Steinbachstraße 15 | 52074 Aachen | Germany

